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Abstract. In the present article, we study the homogenization of a second-order elliptic PDE with oscillating coefficients
in two different domains, namely a standard rectangular domain with very general oscillations and a circular type oscillating
domain. Further, we consider the source term in L1 and hence the solutions are interpreted as renormalized solutions. In the first
domain, oscillations are in horizontal directions, while that of the second one is in the angular direction. To take into account
the type of oscillations, we have used two different types of unfolding operators and have studied the asymptotic behavior
of the renormalized solution of a second-order linear elliptic PDE with a source term in L1. In fact, we begin our study in
oscillatory circular domain with oscillating coefficients and L2 data which is also new in the literature. We also prove relevant
strong convergence (corrector) results. We present the complete details in the context of circular domains, and sketch the proof
in other domain.
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1. Introduction

Several critical physical properties of a material are controlled by its geometric construction. There-
fore, analyzing the effect of materials geometric structure can help to improve some of its beneficial
physical properties and reduce unwanted behavior. This leads to the study of boundary value problems in
complex domains such as perforated domain, thin domain, junctions of the thin domain of different con-
figuration (like domain we have considered in this article, with rapidly oscillating boundary), networks,
etc. Various constructions shaped as thick junctions or oscillating boundary domains are successfully
used in many nano-technologies, micro-techniques, micro-strip radiator, wide-band gap semiconduc-
tor, efficient sensor signal processing filters, transistors, heat radiators [17,23,31,32]. This leads to the
study of multi-scale analysis and eventually homogenization of boundary value problems in domain with
rapidly oscillating boundary. Some sample depictions are given in Figs 1 and 2.

The study of homogenization on oscillating boundary domain was started by the work done in [30],
where the authors have considered Helmholtz equation on oscillating domain to study the limiting be-
havior of the solution as the oscillating parameter goes to zero. But the proper story begins in 1978 by
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Fig. 1. Oscillating domain �ε . Fig. 2. Circular domain Oε .

R. Brizzi and J. P. Chalot in [14], where they have analyzed the asymptotic behavior of Laplace equation
with Neumann boundary condition in various oscillating domains as the oscillation parameter vanishes.
Subsequently, in this direction, that is, the homogenization of boundary value problems in oscillating do-
main, a wealthy literature is available. For example, see [1,6,7,10,12,27,28,33,35] and references therein
though it is no way exhaustive. The main tools they have used in these articles are asymptotic expan-
sion, extension operators, two-scale convergence, and oscillating test functions. Later, periodic method
of unfolding was introduced in [15], and a modified definition of the periodic unfolding method is used
in [11] to study homogenization in general oscillating domains and in particular it was quite handy to
apply to periodic asymptotic problems including oscillating domains. We remark to mention that most
of the article cited so far have pillar type oscillations. Again a large amount of literature is available,
but we restrict ourselves to the method of unfolding applied by the present authors and their group. In
[2], authors have introduced unfolding operator for the general oscillating domain and as an application
they have homogenized a nonlinear elliptic PDE. This unfolding operator and a modified version of
this unfolding operator was used to homogenize various boundary value problems and optimal control
problems, see, for example [3–5,19,39,40]. Prior to it, unfolding operator is used for the first time to
characterize the optimal control, see [37,38].

In all the articles cited above, the source terms were always in L2, so the homogenization procedure
happened in a proper Hilbert space set up. In the present work, we consider the source term in L1 Banach
space and hence we can not expect the solution to be uniformly bounded in H 1. To overcome this issue,
we will make use of the definition of the renormalized solution, which has been introduced by R. J.
DiPerna and P. L. Lions in [20] for the Boltzmann equation. Further, the idea of the renormalized solution
has been adapted for the elliptic equation in [8,18]. To see more about the application of renormalized
solutions, we refer to the articles [9,13,24,29,34] and references therein.

In the theory of homogenization, the concept of renormalized solution first time used to perform
homogenization in [36] by F. Murat. After that, some results though not many, have been reported on
homogenization with the renormalized solution. For example, see [21,22,25,26] and references therein.
The present work is relatively closer to the work done in [26]. In [26], the authors have considered
homogenization of a second-order elliptic PDE in the brush-like or pillar type oscillating domain with
source term in L1. As the source term is L1; the solution has to be understood as a renormalized solution.
To get the asymptotic behavior of the renormalized solution, they used the renormalized formulation of
the limit problem or homogenized problem corresponding to L2 data. Also, compared to the existing
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articles on homogenization in the oscillating domain, the oscillations are not periodic in [26]. The authors
have assumed that the characteristic function of the pillar-base should converge weakly* in L∞ to some
strictly positive function. The oscillating test function method was used as a homogenization tool.

In the present article, we consider a second-order elliptic PDE with oscillating coefficients in a general
forest type oscillating domain and circular type oscillating domain (see Figs 1 and 2) with source term
in L1. This work is a non-trivial generalization of the work done in [26]. In [26], the oscillation is non-
periodic, but pillar type; here, we are considering the periodic but very general type of oscillations. We
are also allowing the n − 1 directional oscillating coefficients in the coefficient matrix. In contrast to
[26], extension by ‘zero’ will not be helpful as it will not belong to H 1 in the non-oscillating direction.
To avoid this difficulty, we use the periodic unfolding operator for the general forest oscillating domain
(see, [2,16]). In addition, we also consider circular oscillating domain. To carry out the homogenization
with L1 source term for the circular oscillating domain, first we need to do homogenization for the
general second-order elliptic PDE with source term in L2. As it has circular type oscillations, to analyze
the asymptotic behavior of the renormalized solution, we have used the periodic unfolding operator in
polar coordinates introduced in [2]. Also, we have homogenized the general second-order elliptic PDE
with angular oscillations in coefficients, which has not been done in [2].

Let us now explain the organization of the present article and the main ideas of the proofs. In Section 2,
we describe the geometry of the domains under consideration. We are considering 2 types of domains
namely �ε and Oε. The first one �ε is the domain with an oscillating boundary, where oscillations are
in the horizontal direction. In contrast, the second one Oε has oscillations in the angular direction. The
reference cell and limit domain for both cases are also presented. We have included the definition of
unfolding operator and its properties for both domains without proof. A detailed explanation is available
in [2]. We are also mentioning some auxiliary functions which are important in the study of renormalized
solutions.

In Section 3, our aim is to prove the homogenization results of a general second-order PDE in the
circular oscillating domain Oε with source term in L1. As it requires the homogenization results with
L2 data, we are proving it first and then completing the main result. We are using the polar unfolding
operator and properties of renormalized solutions to prove our result.

In Section 4, we prove homogenization results of a general second-order PDE in the general oscillating
domain �ε with source term in L1. Since the proof shows a lot of similarities with the proof we have
done in the case of Oε, we are only providing an outline of the proof.

In the Appendix, we are proving the properties of renormalized solutions. We are doing it only for the
limit problem of the circular domain. By using the same steps, we can prove similar properties for other
renormalized solutions also.

2. Domain descriptions, unfolding operators and auxiliary functions

2.1. General oscillating domain �ε

Let 0 < M < M ′ be real numbers, �b : [0, 1] → R be a Lipschitz continuous function such that
0 < �b(x) < M and ε = 1

n
, n ∈ N. Let � be a connected open subset of �+ = [0, 1] × [M, M ′] with

Lipschitz boundary is our reference cell (see Figs 3 and 4). The upper oscillating part of the domain
denoted by �+

ε is given by

�+
ε =
{
(x1, x2) ∈ [0, 1] × [M, M ′] : ({x1

ε

}
, x2

)
∈ �

}
,
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Fig. 3. Reference cell �. Fig. 4. Limit Domain �.

where
{

x1
ε

}
denotes the fractional part of x1

ε
. The lower fixed part is given by

�− = {(x1, x2) ∈ [0, 1] × [0, M] : �b(x1) < x2 < M
}
.

The oscillating domain �ε = int(�+
ε ∪ �−) and the limit domain � = int(�+ ∪ �−).

For x2 ∈ (M, M ′), define the projection of a section in � and its measure by

Y(x2) = {y ∈ [0, 1] : (y, x2) ∈ �
}
,

h(x2) = m
(
Y(x2)

)
, where m denote the Lebesgue measure on R.

This is highly crucial in the definition of the unfolding operators. We assume the following properties
on �:

(1) The set Y(x2) is connected for all x2 ∈ (M, M ′),
(2) There exists ρ > 0 such that 0 < ρ � h(x2) < 1 for all x2 ∈ (M, M ′),
(3) The boundary part ∂� ∩ ([0, 1] × {x2 = M}) is connected and have positive one dimensional

Lebesgue measure.

2.2. Circular oscillating domain Oε

Let 0 < r0 < r1 < r2 be real numbers, ε = 1
n
, n ∈ N. Let � be a connected open subset of R2 which

is contained in the annulus O+ = {(r, θ) : r0 < r < r1} with Lipschitz boundary is our reference cell
(see Figs 5 and 6). Now define

O+
ε =
{
(r, θ) ∈ O+ :

(
r,

{
θ

ε

}
2π

)
∈ �

}
, O− = {(r, θ) : r1 < r < r2

}
,

Oε = int(O+
ε ∪ O−) and O = int(O+ ∪ O−),

where O+
ε is the inner oscillating part, O− is the outer fixed part, Oε is the oscillating domain and O is

the limit domain. Here
{

θ
ε

}
2π

denotes the fractional part of θ
2πε

.
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Fig. 5. Reference cell �. Fig. 6. Limit Domain O.

For r ∈ (r0, r1), define

Y(r) = {θ ∈ [0, 2π] : (r, θ) ∈ �
}
,

h(r) = m(Y(r))

2π
, where m denotes the Lebesgue measure on R.

(1)

We assume the following properties on �:

(1) The set Y(r) is connected for all r ∈ (r0, r1),
(2) There exists ρ > 0 such that 0 < ρ � h(r) < 2π for all r ∈ (r0, r1).

For the sake of completeness, we recall the definition of unfolding operators for �ε, Oε and its properties
without proof. For proof, we refer to [2].

Remark 1. The set of domains that satisfy the hypothesis for rectangular oscillating domains is huge;
Fig. 1 is a representative example. Figure 2 is simply a prototype example of the huge collection of
circular oscillating domains that satisfy the hypothesis for circular oscillating domains. The analysis for
the proofs does not depend on the structure of the domain as long as it satisfies the hypothesis.

2.3. Unfolding operator for �ε

We have already introduced the domain �ε with highly oscillating boundary. First, we will define the
unfolded domain �U in which the unfolded functions are defined. The unfolded domain �U is defined
as follows:

�U = {(x1, x2, y) | x1 ∈ (0, 1), x2 ∈ (M, M ′), y ∈ Y(x2)
}
.

Let G = {(x2, y) | x2 ∈ (M, M ′), y ∈ Y(x2)}, then, one can write, �U = (0, 1)×G. Let φε : �U → �+
ε

be defined as φε(x1, x2, y) = (ε [ x1
ε

]+ εy, x2
)
. The ε− unfolding of a function u : �+

ε → R is the
function u ◦ φε : �U → R. The operator which maps every function u : �+

ε → R to its ε-unfolding is
called the unfolding operator. We denote the unfolding operator by T ε, that is,

T ε : {u : �+
ε → R

}→ {T ε(u) : �U → R
}
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is defined by

T ε(u)(x1, x2, y) = u

(
ε

[
x1

ε

]
+ εy, x2

)
.

If U ⊂ R2 containing �+
ε and u is a real valued function on U , T ε(u) means, that is T ε acting on the

restriction of u to �+
ε . Some important properties of the unfolding operator are stated below. For each

ε > 0:

(1) T ε is linear. Further, if u, v : �+
ε → R, then, T ε(uv) = T ε(u)T ε(v).

(2) Let u ∈ L1(�+
ε ). then,∫

�U

T ε(u) =
∫

�+
ε

u.

(3) Let u ∈ L2(�+
ε ). Then, T εu ∈ L2(�U) and ‖T εu‖L2(�U ) = ‖u‖L2(�+

ε ).
(4) Let u ∈ H 1(�+

ε ). Then, T εu ∈ L2(0, 1;H 1(G)). Moreover,

∂

∂x2
T εu = T ε ∂u

∂x2
and

∂

∂y
T εu = εT ε ∂u

∂x1
.

(5) Let u ∈ L2(�+
ε ). Then, T εu → u strongly in L2(�U). More generally, let uε → u strongly in

L2(�+). Then, T εuε → u strongly in L2(�U).
(6) Let, for every ε, uε ∈ L2(�+

ε ) be such that T εuε ⇀ u weakly in L2(�U). then,

ũε ⇀

∫
Y(x2)

u(x1, x2, y) dy weakly in L2
(
�+).

(7) Let, for every ε > 0, uε ∈ H 1(�+
ε ) be such that T εuε ⇀ u weakly in L2(0, 1;H 1(G)). Then,

ũε ⇀

∫
Y(x2)

u dy and
∂̃uε

∂x2
⇀

∫
Y(x2)

∂u

∂x2
dy weakly in L2

(
�+),

where ũε denotes the extension by 0 of uε to �+. This notation is used through the article.

2.4. Unfolding operator in polar coordinates for Oε

Since the oscillations in Oε is in angular direction, we need unfolding operators in polar coordinates to
do the analysis. Here we will recall the definition of unfolding operator for O and its properties without
proof. For proof one can see [2]. As in the earlier case first, we will define the unfolded domain OU in
which the unfolded function are defined. The unfolded domain OU is defined as follows,

OU = {(r, θ, τ ) | θ ∈ (0, 2π), r ∈ (r0, r1), τ ∈ Y(r)
}
.

Let G = {(r, θ, τ ) | r ∈ (r0, r1), θ ∈ (0, 2π), τ ∈ Y(r)}, then, we can write, OU = (0, 2π) × G.
Let φε : OU → O+

ε be defined as φε(θ, r, τ ) = (r, ε [ θ
ε

]
2π

+ ετ
)
. The ε - unfolding of a function
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u : O+
ε → R is the function u ◦ φε : OU → R. The operator which maps every function u : O+

ε → R

to its ε-unfolding is called the unfolding operator. Let the unfolding operator be denoted by T ε, that is,

T ε : {u : O+
ε → R

}→ {T ε(u) : OU → R
}

is defined by

T ε(u)(r, θ, τ ) = u

(
r, ε

[
θ

ε

]
2π

+ ετ

)
,

where [ θ
ε
]2π denotes the integer part of θ

2πε
.

If U ⊂ R2 containing O+
ε and u is a real valued function on U , T ε(u) will mean, T ε acting on the

restriction of u to O+
ε . Some important properties of the circular unfolding operator are stated below.

For each ε > 0:

(1) T ε is linear. Further, if u, v : O+
ε → R, then T ε(uv) = T ε(u)T ε(v).

(2) Let u ∈ L1(O+
ε ). then,∫

OU

T ε(u) = 2π

∫
O+

ε

u.

(3) Let u ∈ L2(O+
ε ). Then, T εu ∈ L2(OU) and ‖T εu‖L2(OU ) = √

2π‖u‖L2(O+
ε ).

(4) Let u, ∂u
∂r

, ∂u
∂θ

∈ L2(O+), Then, T εu, ∂
∂r

T εu, ∂
∂τ

T εu ∈ L2(OU). Moreover,

∂

∂r
T εu = T ε ∂u

∂r
and

∂

∂τ
T εu = εT ε ∂u

∂θ
.

(5) Let u ∈ L2(O+
ε ). Then, T εu → u strongly in L2(OU). More generally, let uε → u strongly in

L2(O+). Then, T εuε → u strongly in L2(OU).
(6) Let, for every ε, uε ∈ L2(O+

ε ) be such that T εuε ⇀ u weakly in L2(OU). Then,

ũε ⇀
1

2π

∫
Y(r)

u(r, θ, τ ) dτ weakly in L2
(
O+).

(7) Let, for every ε > 0, uε ∈ H 1(O+
ε ) be such that T εuε ⇀ u and ∂

∂r
T εuε ⇀ ∂u

∂r
weakly in L2(OU).

Then,

ũε ⇀
1

2π

∫
Y(r)

u dτ and
∂̃uε

∂r
⇀

1

2π

∫
Y(r)

∂u

∂r
dτ weakly in L2

(
O+),

where ũε denotes the extension by 0 of uε to O+.

2.5. Auxiliary functions

Here we recall some auxiliary functions which are important in the study of renormalized solutions
and homogenization with L1 data. The functions defined are standard and available in the literature. For
details refer [8,18,26,36]. All the functions are defined from R → R.
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S(t) =

⎧⎪⎨⎪⎩
1 if t > 0,

0 if t = 0,

−1 if t < 0.

1

−1

Tk(t) =
{

t if |t | � k,

kS(t) if |t | > k. k−k

k

−k

Sδ(t) = Tδ(t)

δ
=
{

t
δ

if |t | � δ,

S(t) if |t | > δ. δ−δ

1

−1

gp(t) =

⎧⎪⎨⎪⎩
1 if |t | � p,

1 − |t |
p

if p < |t | < 2p,

0 if |t | � 2p.
−2p 2p−p p

gk
δ (t) =

⎧⎪⎨⎪⎩
1 if |t | � k,

1 − |t |−k

δ
if k < |t | < k + δ,

0 if |t | � k + δ.
−(k + δ) k + δ

−k k

ĝk
δ (t) =

⎧⎪⎨⎪⎩
0 if |t | � k,( |t |−k

δ

)
S(t) if k < |t | < k + δ,

S(t) if |t | � k + δ.

−(k + δ)

k + δ−k k

3. Homogenization in Oε

To study the asymptotic behavior of elliptic PDE with source term in L1, we need the homogeniza-
tion results with source term in L2. For the Laplacian it is done in [2], but we need the homogenization
results for general second order elliptic PDE in circular domain. So, first we investigate the homoge-
nization results with L2 data in Oε. In the whole article, we are not writing the measure while doing
integration. It is just for getting the expressions in a simple form. If we are taking the functions in polar
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coordinates, then the integration is with respect to the measure r dr dθ ; otherwise, it is with respect to
the usual Lebesgue Measure. When we are integrating over the unfolded domain, it is better to consider
the functions in polar coordinates.

3.1. Homogenization in Oε with L2 data

Let A(r, θ) = [ai,j (r, θ)]2×2 be a 2 × 2 matrix where the entries aij : O → R are Caratheodory
type functions. Also A(r, θ) is uniformly elliptic and bounded in O, that is, there exists α, β > 0 such
that 〈

A(x)λ, λ
〉
� α|λ|2 and

∣∣A(x)λ
∣∣ � β|λ|

for all λ ∈ R2 and a.e. in O. Define

Aε(r, θ) = [aε
ij (r, θ)

]
2×2 =

{
A
(
r, θ

ε

)
if (r, θ) ∈ O+,

A(r, θ) if (r, θ) ∈ O−.

Consider the following problem in the domain Oε:{
− div(Aε∇uε) + uε = f in Oε,

Aε∇uε · νε = 0 on ∂Oε.
(2)

Here f ∈ L2(O) is a given function, νε is the outward normal vector on ∂Oε. The variational form
corresponding to (2) is given as: Find uε ∈ H 1(Oε) such that∫

Oε

Aε∇uε∇v + uεv =
∫
Oε

f v for all v ∈ H 1(Oε). (3)

Since the oscillations are in a circular fashion, to study the asymptotic behavior, we need to write the
equation in polar form in O+

ε as follows:

∫
O+

ε

([
αε γ ε

βε ηε

][
∂uε

∂r

∂uε

∂θ

][
∂v
∂r

∂v
∂θ

]
+ uεv

)
+
∫
O−

A∇uε∇v + uεv =
∫
Oε

f v, (4)

for all v ∈ H 1(Oε), where

αε = aε
11 cos2(θ) + aε

12 sin(θ) cos(θ) + aε
21 sin(θ) cos(θ) + aε

22 sin2(θ),

βε = 1

r

(−aε
11 sin(θ) cos(θ) − aε

12 sin2(θ) + aε
21 cos2(θ) + aε

22 sin(θ) cos(θ)
)
,

γ ε = 1

r

(−aε
11 sin(θ) cos(θ) + aε

12 cos2(θ) − aε
21 sin2(θ) + aε

22 sin(θ) cos(θ)
)

and

ηε = 1

r2

(
aε

11 sin2(θ) − aε
12 sin(θ) cos(θ) − aε

21 sin(θ) cos(θ) + aε
22 cos2(θ)

)
.

(5)
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Here, we have αε = Aε
[ cos(θ)

sin(θ)

][ cos(θ)
sin(θ)

]
and det

[
αε γ ε

βε ηε

] = 1
r2 det Aε. Since Aε is coercive, the matrix[

αε γ ε

βε ηε

]
is also coercive.

By definition of unfolding operator (see Section 2.4), we have T ε(aε
ij )(r, θ, τ ) = aij (r, τ ). Since it

is independent of ε, for simplicity, we denote T ε(aε
ij ) as a0

ij . Then, from the properties of unfolding
operator, we see that T ε(αε), T ε(βε), T ε(γ ε) and T ε(ηε) converges to α0, β0, γ 0 and η0 strongly in
L2(OU), respectively, as ε → 0, where

α0 = a0
11 cos2(θ) + a0

12 sin(θ) cos(θ) + a0
21 sin(θ) cos(θ) + a0

22 sin2(θ),

β0 = 1

r

(−a0
11 sin(θ) cos(θ) − a0

12 sin2(θ) + a0
21 cos2(θ) + a0

22 sin(θ) cos(θ)
)
,

γ 0 = 1

r

(−a0
11 sin(θ) cos(θ) + a0

12 cos2(θ) − a0
21 sin2(θ) + a0

22 sin(θ) cos(θ)
)

and

η0 = 1

r2

(
a0

11 sin2(θ) − a0
12 sin(θ) cos(θ) − a0

21 sin(θ) cos(θ) + a0
22 cos2(θ)

)
.

(6)

We want to study the asymptotic behavior of uε as ε → 0. First we describe the limit problem.

Limit problem: Consider the Hilbert space

V (O) =
{
ψ ∈ L2(O) : ∂ψ

∂r
∈ L2(O), ψ ∈ H 1

(
O−)},

with the inner product

〈φ, ψ〉V (O) = 〈φ, ψ〉L2(O+) +
〈
∂φ

∂r
,
∂ψ

∂r

〉
L2(O+)

+ 〈φ, ψ〉H 1(O−).

We define the limit problem as follows: Given f ∈ L2(O), find u ∈ V (O) such that∫
O+

(
a0

∂u

∂r

∂v

∂r
+ huv

)
+
∫
O−

(A∇u∇v + uv) =
∫
O+

hf v +
∫
O−

f v, for all v ∈ V (O), (7)

where

a0(r, θ) =
∫

Y(r)

1

η0

(
α0η0 − γ 0β0

)
dτ =

∫
Y(r)

(
det(A(r, τ ))

A(r, τ )
[ − sin(θ)

cos(θ)

][ − sin(θ)
cos(θ)

]) dτ.

Here h and Y are defined as in (1). Since A is elliptic, with elliptic constant α and bounded by β, we
have a0 > h(r)

β2

α
. Hence, (7) has a unique solution by Lax–Milgram lemma. We leave the details. We

now present the homogenization in circular domain with L2 data.

Theorem 1. Let uε and u be the unique solutions of (4) and (7) respectively. Then, we have the following
convergences.

ũε − χOε
u −→ 0 strongly in L2(O),
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∂̃uε

∂r
− χOε

∂u

∂r
−→ 0 strongly in L2

(
O+),

∂̃uε

∂θ
− χOε

(−βε

ηε

)
∂u

∂r
−→ 0 strongly in L2

(
O+),

uε − u −→ 0 strongly in H 1
(
O−).

Proof. We remark that the second and third convergences are corrector results. By taking v = uε, in the
variational form (3), we get ‖uε‖H 1(Oε) � K , where K is a generic constant independent of ε. From the
integral equality property of unfolding operator, we deduce the following bounds.

∥∥T εuε

∥∥
L2(OU )

�
√

2π‖uε‖L2(O+
ε ) � K,

∥∥∥∥ ∂

∂r
T εuε

∥∥∥∥
L2(OU )

�
√

2π

∥∥∥∥∂uε

∂r

∥∥∥∥
L2(O+

ε )

� K and∥∥∥∥ ∂

∂τ
T εuε

∥∥∥∥
L2(OU )

� ε
√

2π

∥∥∥∥∂uε

∂θ

∥∥∥∥
L2(O+

ε )

� K.

By weak compactness of L2(OU), there exits a sub-sequence (still denoted by ε) and u+ ∈ L2(OU) such
that

T εuε ⇀ u+ weakly in L2(OU),

∂

∂r
T εuε ⇀

∂u+

∂r
, that is, T ε ∂uε

∂r
⇀

∂u+

∂r
weakly in L2(OU),

∂

∂τ
T εuε ⇀

∂u+

∂τ
, that is, εT ε ∂uε

∂θ
⇀

∂u+

∂τ
weakly in L2(OU).

(8)

Again since
{
T ε ∂uε

∂θ

}
is bounded in L2(OU), we have ∂u

∂τ
= 0 (means u ∈ L2(O+)) and there exists a

p ∈ L2(OU) such that, up-to a sub-sequence, we have

T ε ∂uε

∂θ
⇀ p weakly in L2(OU). (9)

Now to identify p, consider φε = εφ(r, θ)ψ
({

θ
ε

}
2π

)
, where φ ∈ D(O+) and ψ ∈ C∞[0, 2π]. Then

T ε
(
φε
) = εT ε(φ)ψ(τ), T ε

(
∂φε

∂r

)
= εT ε

(
∂φ

∂r

)
ψ(τ) and

T ε

(
∂φε

∂θ

)
= εT ε

(
∂φ

∂θ

)
+ T ε(φ)ψ ′(τ ).

(10)

Now use φε as a test function in (4), we have

∫
O+

ε

([
αε γ ε

βε ηε

][
∂uε

∂r

∂uε

∂θ

][
∂φε

∂r

∂φε

∂θ

]
+ uεφ

ε

)
=
∫
O+

ε

f φε.
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Applying unfolding operator, we get∫
OU

([
T ε(αε) T ε(γ ε)

T ε(βε) T ε(ηε)

][
T ε ∂uε

∂r

T ε ∂uε

∂θ

][
T ε ∂φε

∂r

T ε ∂φε

∂θ

]
+ T ε(uε)T

ε
(
φε
)) =

∫
OU

T ε(f )T ε
(
φε
)
.

Then using (6), (8), (9), (10) and passing to the limit as ε → 0 in the above equation, we obtain∫
OU

([
α0 γ 0

β0 η0

][
∂u+
∂r

p

][
0

φψ ′

])
=
∫
OU

(
β0 ∂u+

∂r
+ η0p

)
φ(r, θ)ψ ′(τ ) = 0.

Since φ ∈ D(O+) and ψ ∈ C∞[0, 2π] are arbitrary, we have

p = −β0

η0

∂u+

∂r
. (11)

Now since in {uε} is bounded in H 1(O−), by weak compactness, there exists u− ∈ H 1(O−) such that

u−
ε ⇀ u− weakly in H 1

(
O−).

Define

u(x) = u+χO+ + u−χO− =
{

u+(x) if x ∈ O+,

u−(x) if x ∈ O−.

Claim. u ∈ V (O) and satisfies the limit problem (7).

The part that u ∈ V (O) can be done as in [2] and hence we omit the proof here. Thus, it remains to
prove that u satisfies the limit problem (7). Consider ψ ∈ C∞(O) as test a function in (4) to get∫

O+
ε

([
αε γ ε

βε ηε

][
∂uε

∂r

∂uε

∂θ

][
∂ψ

∂r

∂ψ

∂θ

]
+ uεψ

)
+
∫
O−

A∇uε∇ψ + uεψ =
∫
Oε

f ψ.

Applying unfolding, we have

1

2π

∫
OU

[
T ε(αε) T ε(γ ε)

T ε(βε) T ε(ηε)

][
T ε ∂uε

∂r

T ε ∂uε

∂θ

][
T ε ∂ψ

∂r

T ε ∂ψ

∂θ

]
+ 1

2π

∫
OU

T εuεT
εψ +

∫
O−

A∇uε∇ψ + uεψ

= 1

2π

∫
OU

T εf T εψ +
∫
O−

f ψ.

Then, using (6), (8) and (9), pass to the limit as ε → 0 in the above equation to obtain

1

2π

∫
OU

([
α0 γ 0

β0 η0

][
∂u+
∂r

p

][
∂ψ

∂r

∂ψ

∂θ

]
+ u+ψ

)
+
∫
O−

A∇u∇ψ + uψ = 1

2π

∫
OU

f ψ +
∫
O−

f ψ.

AUTHOR  C
OPY



A.K. Nandakumaran et al. / Homogenization with L1 data 135

Using the relation (11), the above equation reduces to

1

2π

∫
OU

1

η0

(
α0η0 − γ 0β0

)∂u

∂r

∂ψ

∂r
+ uψ +

∫
O−

A∇u∇ψ + uψ = 1

2π

∫
OU

f ψ +
∫
O−

f ψ.

Now from the definition of unfolded domain and h, the above equation can be rewritten as∫
O+

a0
∂u

∂r

∂ψ

∂r
+ huψ +

∫
O−

A∇u∇ψ + uψ =
∫
O+

hf ψ +
∫
O−

f ψ,

where

a0(r, θ) = 1

2π

∫
Y(r)

1

η0

(
α0η0 − γ 0β0

)
dτ = 1

2π

∫
Y(r)

(
det(A(r, τ ))

A(r, τ )
[ − sin(θ)

cos(θ)

][ − sin(θ)
cos(θ)

]) dτ.

The last expression can be derived using (6). Hence from the density of C∞(O) in V (O), we see that
u satisfies the limit problem (7). Now from (8), (9), (11) and using the properties of unfolding, we have
the following convergences:

ũ+
ε ⇀ hu+,

∂̃u+
ε

∂r
⇀ h

∂u+

∂r
,

∂̃u+
ε

∂θ
⇀

(
− 1

2π

∫
Y(r)

β0

η0
dτ

)
∂u+

∂r
weakly in L2

(
O+) and

u−
ε ⇀ u− weakly in H 1

(
O−).

(12)

To prove the strong convergences, consider the following energy equality∫
Oε

Aε∇uε∇uε + u2
ε =
∫
Oε

f uε =
∫
O+

ε

f uε +
∫
O−

f uε = 1

2π

∫
OU

T εf T εuε +
∫
O−

f uε.

Let us pass to the limit as ε → 0 to get

lim
ε→0

(∫
Oε

Aε∇uε∇uε + u2
ε

)
=
∫

O+
hf u +

∫
O−

f u

=
∫

O+
a0

(
∂u

∂r

)2

+ hu2 +
∫
O−

A∇u∇u + u2. (13)

The last equality follows from the limit problem (7) by taking v = u. To prove the strong convergence,
consider the following integral I ε:

I ε =
∫
O+

[
αε γ ε

βε ηε

]⎡⎣ ∂̃uε

∂r
− χOε

∂u
∂r

∂̃uε

∂θ
− χOε

−βε

ηε
∂u
∂r

⎤⎦⎡⎣ ∂̃uε

∂r
− χOε

∂u
∂r

∂̃uε

∂θ
− χOε

−βε

ηε
∂u
∂r

⎤⎦+
∫
O+

(ũε − χOε
u)2

+
∫
O−

A(∇uε − ∇u)(∇uε − ∇u) + (uε − u)2.
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On expanding, we get

I ε =
∫
O+

ε

[
αε γ ε

βε ηε

][
∂uε

∂r

∂uε

∂θ

][
∂uε

∂r

∂uε

∂θ

]
−
∫
O+

ε

[
αε γ ε

βε ηε

][
∂uε

∂r

∂uε

∂θ

][
1

−βε

ηε

]
∂u

∂r

−
∫
O+

ε

[
αε γ ε

βε ηε

][
1

−βε

ηε

][
∂uε

∂r

∂uε

∂θ

]
∂u

∂r
+
∫
O+

ε

[
αε γ ε

βε ηε

][
1

−βε

ηε

][
1

−βε

ηε

](
∂u

∂r

)2

+
∫
O+

ε

(
uε

2 − 2uεu + u2
)+ ∫

O−
(A∇uε∇uε − A∇uε∇u − A∇u∇uε + A∇u∇u)

+
∫
O−

(
u2

ε − 2uεu + u2
)
.

On combining first, fifth, eighth and twelfth terms, the above equation can be rewritten as

I ε =
∫
Oε

(
Aε∇uε∇uε + u2

ε

)− ∫
O+

ε

[
αε γ ε

βε ηε

][
∂uε

∂r

∂uε

∂θ

][
1

−βε

ηε

]
∂u

∂r

−
∫
O+

ε

[
αε γ ε

βε ηε

][
1

−βε

ηε

][
∂uε

∂r

∂uε

∂θ

]
∂u

∂r
+
∫
O+

ε

[
αε γ ε

βε ηε

][
1

−βε

ηε

][
1

−βε

ηε

](
∂u

∂r

)2

+
∫
O+

ε

(−2uεu + u2
)+ ∫

O−

(−A∇uε∇u − A∇u∇uε + A∇u∇u − 2uεu + u2
)
.

Using polar unfolding operator, we arrive at

I ε =
∫
Oε

(
Aε∇uε∇uε + u2

ε

)− 1

2π

∫
OU

[
T ε(αε) T ε(γ ε)

T ε(βε) T ε(ηε)

][
T ε( ∂uε

∂r
)

T ε( ∂uε

∂θ
)

][
1

T ε(
−βε

ηε )

]
T ε

(
∂u

∂r

)

− 1

2π

∫
OU

[
T ε(αε) T ε(γ ε)

T ε(βε) T ε(ηε)

][
1

T ε(
−βε

ηε )

][
T ε( ∂uε

∂r
)

T ε( ∂uε

∂θ
)

]
T ε

(
∂u

∂r

)

+ 1

2π

∫
OU

[
T ε(αε) T ε(γ ε)

T ε(βε) T ε(ηε)

][
1

T ε(
−βε

ηε )

][
1

T ε(
−βε

ηε )

](
T ε

(
∂u

∂r

))2

+ 1

2π

∫
OU

(−2T ε(uε)u + T ε
(
u2
))

+
∫
O−

(−A∇uε∇u − A∇u∇uε + A∇u∇u − 2uεu + u2
)
.

Now using (6), (8), (9), (12) and (13), we get limε→0 I ε = 0. Hence, from coercivity of A, we have the
strong convergences. This completes the proof. �
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We now proceed to establish the homogenization with L1 data in circular domain.

3.2. Homogenization in Oε with L1 data

With A and Aε is defined as in Section 3.1, consider the following problem:

{
− div(Aε∇uε) + uε = f in Oε,

Aε∇uε · νε = 0 on ∂Oε.
(14)

Here, f ∈ L1(O) is a given function, νε is the outward unit normal vector on ∂Oε. As it is well
known, we remark that the solution is not defined in the usual weak formulation but using the concept of
renormalized solution. Recall the auxiliary function Tk defined as in Section 2.5. A function uε is called
a renormalized solution of (14) if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε ∈ L1(Oε) such that Tk(uε) ∈ H 1(Oε), for all k > 0,

1

k
‖Tk(uε)‖2

H 1(Oε)
→ 0 as k → ∞,∫

Oε

Aε∇Tk(uε)∇(ψg(uε)) + uεψg(uε) =
∫
Oε

f ψg(uε),

for all k > 0, ψ ∈ H 1(Oε) ∩ L∞(Oε), g ∈ PC1
c (R) with supp(g) ⊂ [−k, k].

(15)

Here PC1
c (R) denotes the set of all Lipschitz continuous functions which are piece-wise differentiable

on R with compact support. In polar form, we can write (15) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε ∈ L1(Oε) such that Tk(uε) ∈ H 1(Oε), for all k > 0,

1

k
‖Tk(u)‖2

H 1(Oε)
→ 0 as k → ∞,∫

O+
ε

([
αε γ ε

βε ηε

][
∂
∂r

Tk(uε)

∂
∂θ

Tk(uε)

][
∂
∂r

(ψg(uε))

∂
∂θ

(ψg(uε))

]
+ Tk(uε)ψg(uε)

)

+
∫
O−

A∇Tk(uε)∇(ψg(uε)) + Tk(uε)ψg(uε) =
∫
Oε

f ψg(uε),

for all k > 0, ψ ∈ H 1(Oε) ∩ L∞(Oε), g ∈ PC1
c (R) with supp(g) ⊂ [−k, k].

(16)

We want to study the asymptotic behavior of uε as ε → 0. In fact, we prove that the limit problem is
the renormalized formulation corresponding to (7).
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Limit Problem: We now state the limit problem. Given f ∈ L1(O), consider the problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ L1(O) such that Tk(u) ∈ V (O) for all k > 0,

1

k
‖Tk(u)‖2

V (O) → 0 as k → ∞,∫
O+

a0
∂

∂r
Tk(u)

∂ (ψg(u))

∂r
+ hTk(u)ψg(u) +

∫
O−

A(∇Tk(u)∇(ψg(u)) + Tk(u)ψg(u))

=
∫
O+

hf ψg(u) +
∫
O−

f ψg(u),

for all k > 0, ψ ∈ V (O) ∩ L∞(O), g ∈ PC1
c (R) with supp(g) ⊂ [−k, k].

(17)

The proof of existence and uniqueness of renormalized solutions of (15), (16), (17) have similar steps.
The detailed proof for (17) is done in the Appendix. We now present the homogenization in circular
domain with L1 data.

Theorem 2. Let uε, u be the unique renormalized solutions of (16) and (17) respectively. Then, we have
the following convergences.

ũε − χOε
u −→ 0 strongly in L1(O), (18)

T̃k(uε) − χOε
Tk(u) −→ 0 strongly in L1(O) and weakly* in L∞(O), (19)

˜∂

∂r
Tk(uε) − χOε

∂

∂r
Tk(u) −→ 0 strongly in L2

(
O+), (20)

˜∂

∂θ
Tk(uε) − χOε

(−βε

ηε

)
∂

∂r
Tk(u) −→ 0 strongly in L2

(
O+), (21)

Tk(uε) − Tk(u) −→ 0 strongly in H 1
(
O−). (22)

Proof. We divide the proof into several steps.
Step 1: Proof of (18) and (19). Let fn be a sequence in L2(O) such that fn → f in L1(O). Let un

ε , un

be the renormalized solutions of (15) and (17) with source term fn. Then from Theorem 1, for each n,
we have

ũn
ε − χOε

un −→ 0 strongly in L2(O), as ε → 0.

Now from the Lipschitz property of renormalized solutions (see (64) in the Appendix), we have

‖ũε − χOε
u‖L1(O) �

∥∥ũε − ũn
ε

∥∥
L1(O)

+ ∥∥ũn
ε − χOε

un
∥∥

L1(O)
+ ∥∥χOε

un − χOε
u
∥∥

L1(O)

� 2‖fn − f ‖L1(O) + ∥∥ũn
ε − χOε

un
∥∥

L1(O)
.

Thus, we have ũε − χOε
→ 0 strongly in L1(Oε), which is (18). Further, using Lipschitz continuity of

Tk and Lebesgue Dominated Convergence Theorem, (19) follows.
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Step 2: First, we prove weak form of (20), (21) and (22). To get a bound on Tk(uε), we need the
energy equality of the equation (15). Energy equality for (17) is proved in the Appendix (see Theorem 5
Step 4). Similar steps can be used to get the following energy equality for (15),

∫
Oε

Aε∇Tk(uε)∇Tk(uε) + uεTk(uε) =
∫
Oε

f Tk(uε).

Since (Tk(uε))
2 � uεTk(uε) and A is coercive, we can deduce that

∫
Oε

∣∣∇Tk(uε)
∣∣2 + (Tk(uε)

)2 = ∥∥Tk(uε)
∥∥2

H 1(Oε)
� k‖f ‖L1(O).

Consider the sequence {T ε(Tk(uε)}) in L2(OU), where T ε is the unfolding defined as in Section 2.4.
From the properties of T ε, we have

∥∥T ε
(
Tk(uε)

)∥∥
L2(OU )

�
√

2π
∥∥Tk(uε)

∥∥
L2(O+

ε )
�
(
2πk‖f ‖L1(O)

) 1
2 ,∥∥∥∥ ∂

∂r
T ε
(
Tk(uε)

)∥∥∥∥
L2(OU )

�
√

2π

∥∥∥∥ ∂

∂r
Tk(uε)

∥∥∥∥
L2(O+

ε )

�
(
2πk‖f ‖L1(O)

) 1
2 and∥∥∥∥ ∂

∂τ
T ε
(
Tk(uε)

)∥∥∥∥
L2(OU )

� ε
√

2π

∥∥∥∥ ∂

∂θ
Tk(uε)

∥∥∥∥
L2(O+

ε )

�
(
2πk‖f ‖L1(O)

) 1
2 .

Hence, by weak compactness, there exists a sub-sequence (still denoted by ε) and w ∈ L2(OU) such
that

T ε
(
Tk

(
u+

ε

))
⇀ w,

∂

∂r
T ε
(
Tk

(
u+

ε

))
⇀

∂w

∂r
and

∂

∂τ
T ε
(
Tk

(
u+

ε

))
⇀

∂w

∂τ
weakly in L2(OU).

(23)

From (19), we get

T̃k(uε) − χOε
Tk(u) −→ 0 strongly in L2(O).

Then using the properties of unfolding, we have

T ε
(
T̃k

(
u+

ε

)− χOε
Tk

(
u+)) = T ε

(
Tk

(
u+

ε

))− T ε
(
Tk

(
u+)) −→ 0 in L2(OU).
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Since T ε(Tk(u
+)) → Tk(u

+) in L2(OU), it follows that T ε(Tk(u
+
ε )) −→ Tk(u

+) in L2(OU). Then from
(23), we have w = Tk(u

+). Thus, we have the following convergences:

T ε
(
Tk

(
u+

ε

))
⇀ Tk

(
u+) weakly in L2(OU),

∂

∂r
T ε
(
Tk

(
u+

ε

)) = T ε

(
∂

∂r

(
Tk

(
u+

ε

)))
⇀

∂

∂r
Tk

(
u+) weakly in L2(OU),

∂

∂τ
T ε
(
Tk

(
u+

ε

)) = εT ε

(
∂

∂θ

(
Tk

(
u+

ε

)))
⇀

∂

∂τ
Tk

(
u+) = 0 weakly in L2(OU).

(24)

as u+ is independent of τ . Now consider the sequence {T ε( ∂
∂θ

Tk(u
+
ε ))} which is also bounded in L2(OU)

and hence will have a weakly convergent sub-sequence. Let

T ε

(
∂

∂θ
Tk

(
u+

ε

))
⇀ p weakly in L2(OU). (25)

Now to evaluate p, consider φε as in (10) and gk
δ as in Section 2.5. Take v = φε and g = gk

δ in (16) to
get ∫

O+
ε

Aε∇Tk+1(uε)∇φεgk
δ (uε) +

∫
O+

ε

Aε∇Tk+1(uε)∇Tk+1(uε)φ
ε
(
gk

δ

)′
(uε)

+
∫
O+

ε

uεφ
εgk

δ (uε) =
∫
O+

ε

f φεgk
δ (uε).

Now since gk
δ (uε) → χ{|uε |�k} a.e. as δ → 0, by Lebesgue dominated convergence theorem, as δ → 0,

we obtain:∫
Oε

Aε∇Tk+1(uε)∇φεgk
δ (uε) −→

∫
Oε

Aε∇Tk+1(uε)∇φεχ{|uε |�k} =
∫
Oε

Aε∇Tk(uε)∇φε,∫
Oε

uεφ
εgk

δ (uε) −→
∫
Oε

uεφ
εχ{|uε |�k} and

∫
Oε

f φεgk
δ (uε) −→

∫
Oε

f φεχ{|uε |�k}.

Therefore, we have∫
Oε

Aε∇Tk(uε)∇φε + lim sup
δ→0

∫
Oε

Aε∇Tk+1(uε)∇Tk+1(uε)φ
ε
(
gk

δ

)′
(uε)

+
∫
Oε

uεφ
εχ{|uε |�k} =

∫
Oε

f φεχ{|uε |�k}. (26)

The last two terms in (26) will converge to 0 as ε → 0 from the definition of φε. Now, we look into
the first two terms. Using polar coordinates and unfolding operator, we can rewrite the first term in the
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above equation as

∫
O+

ε

Aε∇Tk(uε)∇φε =
∫
O+

ε

[
αε γ ε

βε ηε

][
∂
∂r

Tk(uε)

∂
∂θ

Tk(uε)

][
∂φε

∂r

∂φε

∂θ

]

= 1

2π

∫
OU

[
T ε(αε) T ε(γ ε)

T ε(βε) T ε(ηε)

][
T ε( ∂

∂r
Tk(uε))

T ε( ∂
∂θ

Tk(uε))

][
T ε ∂φε

∂r

T ε ∂φε

∂θ

]
.

Now passing to the limit as ε → 0 using (6), (10), (24) and (25), we get

lim
ε→0

∫
O+

ε

Aε∇Tk(uε)∇φε = 1

2π

∫
OU

[
α0 γ 0

β0 η0

][
∂
∂r

Tk(u
+)

p

][
0

φψ ′

]

= 1

2π

∫
OU

(
β0 ∂

∂r
Tk

(
u+)+ η0p

)
φ(r, θ)ψ ′(τ ).

To handle the second term in (26) let v = 1 and g = ĝk
δ (as defined in Section 2.5) in (16). Here g is not

compactly supported, but still we can use it as a test function in (16) due to Theorem 6 in the Appendix.
Then∫

Oε

Aε∇Tk+1(uε)∇Tk+1(uε)
(
ĝk

δ

)′
(uε) +

∫
Oε

uεĝ
k
δ (uε) =

∫
Oε

f ĝk
δ (uε).

Since (ĝk
δ )

′ = 1
δ
χ{k�|uε |�k+δ} and uεĝ

k
δ (uε) � 0, we have

1

δ

∫
Oε

Aε∇Tk+1(uε)∇Tk+1(uε)χ{k�|uε |�k+δ} � ‖f ‖L1(O).

Therefore, we have

lim sup
δ→0

∣∣∣∣∫
Oε

Aε∇Tk+1(uε)∇Tk+1(uε)φ
ε
(
gk

δ

)′
(uε)

∣∣∣∣
� ε lim sup

δ→0

1

δ

∫
Oε

Aε∇Tk+1(uε)∇Tk+1(uε)χ{k�|uε |�k+δ} � ε‖f ‖L1(O),

which implies

lim sup
ε→0

(
lim sup

δ→0

∫
Oε

Aε∇Tk+1(uε)∇Tk+1(uε)φ
ε
(
gk

δ

)′
(uε)

)
= 0. (27)

Hence passing to the limit as ε → 0 in (26) we get∫
OU

(
β0 ∂

∂r
Tk

(
u+)+ η0p

)
φ(r, θ)ψ ′(τ ) = 0.
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Since φ ∈ D(O+) and ψ ∈ C∞[0, 2π] are arbitrary, we have

p = −β0

η0

∂

∂r
Tk

(
u+). (28)

Then, using (24) and properties of unfolding, we have

T̃k

(
u+

ε

)
⇀ hTk

(
u+), ˜∂

∂r
Tk

(
u+

ε

)
⇀ h

∂

∂r
Tk

(
u+) and

˜∂

∂θ
Tk

(
u+

ε

)
⇀

(
− 1

2π

∫
Y(r)

β0

η0
dτ

)
∂

∂r
Tk

(
u+) weakly in L2

(
O+). (29)

Since ‖Tk(uε)‖H 1(O−) � (k‖f ‖L1(O))
1
2 , from weak compactness, we have up-to a sub-sequence

Tk(uε) ⇀ v weakly in H 1
(
O−) (30)

as ε → 0. Thus, from (19), we have v = Tk(u
−).

Step 3: Now, we prove the strong convergences in (20), (21) and (22). Using the energy equality for
renormalized formulations of (15) and (17), we have the following energy convergence

lim
ε→0

∫
Oε

Aε∇Tk(uε)∇Tk(uε) + uεTk(uε)

= lim
ε→0

∫
Oε

f Tk(uε) = lim
ε→0

∫
O+

f T̃k(uε) +
∫
O−

f Tk(uε) =
∫
O+

hf Tk

(
u+)+ ∫

O−
f Tk

(
u−)

=
∫
O+

a0

(
∂

∂r
Tk(u)

)2

+ huTk(u) +
∫
O−

A∇Tk(u)∇Tk(u) + uTk(u). (31)

On the other hand, we have∫
Oε

uεTk(uε) =
∫
O+

(̃uε − χOε
u)T̃k(uε) +

∫
O+

u
(
T̃k(uε) − χOε

Tk(u)
)

+
∫
O+

uχOε
Tk(u) +

∫
O−

uεTk(uε). (32)

Now passing to the limit as ε → 0 in (32) using (18) and (19), we get

lim
ε→0

∫
Oε

uεTk(uε) =
∫
O+

huTk(u) +
∫
O−

uTk(u). (33)

Combining (31) and (33), we have

lim
ε→0

∫
Oε

Aε∇Tk(uε)∇Tk(uε) =
∫
O+

a0

(
∂

∂r
Tk(u)

)2

+
∫
O−

A∇Tk(u)∇Tk(u). (34)
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Now consider the following integral I ε and we need to prove I ε → 0.

I ε =
∫
O+

[
αε γ ε

βε ηε

]⎡⎣ ˜∂
∂r

Tk(uε) − χOε

∂
∂r

Tk(u)

˜∂
∂θ

Tk(uε) − χOε
(

−βε

ηε ) ∂
∂r

Tk(u)

⎤⎦⎡⎣ ˜∂
∂r

Tk(uε) − χOε

∂
∂r

Tk(u)

˜∂
∂θ

Tk(uε) − χOε
(

−βε

ηε ) ∂
∂r

Tk(u)

⎤⎦
+
∫
O−

A
(∇Tk(uε) − ∇Tk(u)

)(∇Tk(uε) − ∇Tk(u)
)
.

On expanding, we get

I ε =
∫
O+

ε

[
αε γ ε

βε ηε

][
∂
∂r

Tk(uε)

∂
∂θ

Tk(uε)

][
∂
∂r

Tk(uε)

∂
∂θ

Tk(uε)

]
−
∫
O+

ε

[
αε γ ε

βε ηε

][
∂
∂r

Tk(uε)

∂
∂θ

Tk(uε)

][
1

−βε

ηε

]
∂

∂r
Tk(u)

−
∫
O+

ε

[
αε γ ε

βε ηε

][
1

−βε

ηε

][
∂
∂r

Tk(uε)

∂
∂θ

Tk(uε)

]
∂

∂r
Tk(u) +

∫
O+

ε

[
αε γ ε

βε ηε

][
1

−βε

ηε

][
1

−βε

ηε

](
∂

∂r
Tk(u)

)2

+
∫
O−

(
A∇Tk(uε)∇Tk(uε) − A∇Tk(uε)∇Tk(u) − A∇Tk(u)∇Tk(uε) + A∇Tk(u)∇Tk(u)

)
.

Combine first and fifth terms to get

I ε =
∫
Oε

(
Aε∇Tk(uε)∇Tk(uε) + Tk(uε)

2
)− ∫

O+
ε

[
αε γ ε

βε ηε

][
∂
∂r

Tk(uε)

∂
∂θ

Tk(uε)

][
1

−βε

ηε

]
∂

∂r
Tk(u)

−
∫
O+

ε

[
αε γ ε

βε ηε

][
1

−βε

ηε

][
∂
∂r

Tk(uε)

∂
∂θ

Tk(uε)

]
∂

∂r
Tk(u) +

∫
O+

ε

[
αε γ ε

βε ηε

][
1

−βε

ηε

][
1

−βε

ηε

](
∂

∂r
Tk(u)

)2

+
∫
O−

(−A∇Tk(uε)∇Tk(u) − A∇Tk(u)∇Tk(uε) + A∇Tk(u)∇Tk(u)
)
.

Using polar unfolding operator, we arrive at

I ε =
∫
Oε

Aε∇Tk(uε)∇Tk(uε)

− 1

2π

∫
OU

[
T ε(αε) T ε(γ ε)

T ε(βε) T ε(ηε)

][
T ε( ∂

∂r
Tk(uε))

T ε( ∂
∂θ

Tk(uε))

][
1

T ε(
−βε

ηε )

]
T ε

(
∂

∂r
Tk(u)

)

− 1

2π

∫
OU

[
T ε(αε) T ε(γ ε)

T ε(βε) T ε(ηε)

][
1

T ε(
−βε

ηε )

][
T ε( ∂

∂r
Tk(uε))

T ε( ∂
∂θ

Tk(uε))

]
T ε

(
∂

∂r
Tk(u)

)

+ 1

2π

∫
OU

[
T ε(αε) T ε(γ ε)

T ε(βε) T ε(ηε)

][
1

T ε(
−βε

ηε )

][
1

T ε(
−βε

ηε )

](
T ε

(
∂

∂r
Tk(u)

))2

+
∫
O−

(−A∇Tk(uε)∇Tk(u) − A∇Tk(u)∇Tk(uε) + A∇Tk(u)∇Tk(u)
)
.
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Now using (6), (24), (25), (28) and (34), we get limε→0 I ε = 0. Then, by coercivity of A, we have (20),
(21) and (22). �

Remark 2. In the above problem, we did not put oscillation on the coefficient in the fixed part O−
to avoid extra calculations. In the fixed domain with oscillating coefficient and L1 source term, the
homogenization results are straightforward from the existing literature on homogenization with L1 data,
for example, see [22].

Remark 3. Here we considered the circular oscillating domain only in 2-dimension due to the complex-
ity in modeling circular oscillations in higher dimensions. We are working on it and hope that we will
do it in the future.

4. Homogenization in �ε

The aim of this section is to study the homogenization of a general oscillating elliptic operator with
L1 data in the very general oscillating domain �ε (see Fig. 1). For this purpose, first, we need the
homogenization results with L2 data which are available in the literature (refer [2] and [39]). But to
move on to L1 data, we need the strong convergence results which are not there in the literature. So, first
we will see some strong convergence result in general forest type oscillating domain with source term
f in L2. Since the aim of the article is to do homogenization with L1 data on domains with boundary
having general oscillations, we are doing analysis only in 2 dimension to make the presentation simpler.
It can be extended to n− dimensional domain with n− 1 directional oscillation with minor modification
which we done already with L2 data in [39].

4.1. Homogenization in �ε with L2 data

Let A(x1, x2) = [ai,j (x1, x2)]2×2 be a 2 × 2 matrix, where the entries aij : � → R are Caratheodory
type functions, 1-periodic in x1 direction. Also A(x1, x2) is uniformly elliptic and bounded in �, that is,
there exists α, β > 0 such that〈

A(x)λ, λ
〉
� α|λ|2 and

∣∣A(x)λ
∣∣ � β|λ|

for all λ ∈ R2 and a.e. in �. Define

Aε(x1, x2) =
{

A(x1
ε
, x2) if (x1, x2) ∈ �+,

A(x1, x2) if (x1, x2) ∈ �−.

Note. Here for simplicity we only consider 2 variable case. The same steps will work for n variable.

Consider the following problem in the domain �ε:{
− div(Aε∇uε) + uε = f in �ε,

Aε∇uε · νε = 0 on ∂�ε.
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Here f ∈ L2(�) is a given function, νε is the outward unit normal vector. Corresponding variational
formulation is⎧⎪⎨⎪⎩

Find u ∈ H 1(�ε) such that∫
�ε

Aε∇uε∇v + uεv =
∫

�ε

f v, for all v ∈ H 1(�ε).
(35)

We want to study the asymptotic behavior of uε as ε → 0. Let us look at the limit problem.

Limit problem: Consider the Hilbert space

W(�) =
{
ψ ∈ L2(�) : ∂ψ

∂x2
∈ L2(�), ψ |�− ∈ H 1

(
�−)}

with inner product

〈φ, ψ〉W(�) = 〈φ, ψ〉L2(�+) +
〈

∂φ

∂x2
,
∂ψ

∂x2

〉
L2(�+)

+ 〈φ, ψ〉H 1(�−).

We define the limit problem as follows: Given f ∈ L2(�), find u ∈ W(�) such that∫
�+

a0
∂u

∂x2

∂ψ

∂x2
+ huψ +

∫
�−

A∇u∇ψ + uψ =
∫

�+
hf ψ +

∫
�−

f ψ for all ψ ∈ W(�), (36)

where

a0(x1, x2) = a0(x2) =
∫

Y(x2)

det(A(y, x2))

a11(y, x2)
dy.

Theorem 3. Let uε, u be the unique solutions of (35) and (36) respectively. Then, we have the following
convergences

ũε − χ�ε
u −→ 0 strongly in L2(�),

∂̃uε

∂x2
− χ�ε

∂u

∂x2
−→ 0 strongly in L2

(
�+),

∂uε

∂x1
− χ�ε

(−aε
12

aε
11

)
∂u

∂x2
−→ 0 strongly in L2

(
�+),

uε − u −→ 0 strongly in H 1
(
�−).

(37)

Proof of Theorem 3 is similar to that of Theorem 1. So we are giving only an outline of the proof.

Proof. Since ‖uε‖H 1(�ε) � ‖f ‖L2(�), using the properties of unfolding operator defined in Section 2.3
we have {T ε(uε)} is bounded in L2((0, 1);H 1(G)) and hence from weak compactness, there exist
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u+, p ∈ L2(�U) such that

T εuε ⇀ u+, T ε ∂uε

∂x2
⇀

∂u+

∂x2
, T ε ∂uε

∂x1
⇀ p and

εT ε ∂uε

∂x1
⇀

∂u+

∂x2
= 0 weakly in L2(�U).

(38)

For φ ∈ D(�+) and ψ ∈ C∞([0, 1]), define φε = εφ(x)ψ({ x1
ε
}). Then

T ε
(
φε
) = εT ε(φ)ψ(y),

∂

∂x2
T ε
(
φε
) = εT ε

(
∂φ

∂x2

)
ψ(y) and

T ε

(
∂φε

∂x1

)
= εT ε

(
∂φ

∂x1

)
+ T ε(φ)ψ ′(y).

(39)

Using φε as a test function in (35), apply unfolding operator and passing to the limit using (38) and (39)
to get

p(x1, x2, y) = −a12(y, x2)

a11(y, x2)

∂u+

∂x2
(x1, x2).

Again since ‖uε‖H 1(�ε) � ‖f ‖L2(�), there exists a u− ∈ H 1(�−) such that

uε → u− weakly in �−.

Define u = χ�+u+ + χ�−u−. From ([2], Theorem 4.1), we have u ∈ W(�). Now use ψ ∈ C∞(�) as
test function in (35). Apply unfolding operator and passing to the limit using (38), we obtain∫

�U

[
a11(y, x2) a12(y, x2)

a21(y, x2) a22(y, x2)

][− a12(y,x2)

a11(y,x2)
∂u
∂x2

1

][
∂ψ

∂x1

∂ψ

∂x2

]
+ uψ +

∫
�−

A∇u∇ψ + uψ

=
∫

�U

f ψ +
∫

�−
f ψ.

On simplifying, deduce that∫
�+

a0
∂u

∂x2

∂ψ

∂x2
+ huψ +

∫
�−

A∇u∇ψ + uψ =
∫

�+
hf ψ +

∫
�−

f ψ,

where a0(x1, x2) = a0(x2) =
∫

Y(x2)

det(A(y, x2))

a11(y, x2)
dy.

By density of C∞(�) in W(�) we get that u satisfies the limit problem (36). Using uε as a test function
in (35) and passing to the limit as ε → 0, we get the following energy convergence:

lim
ε→0

(∫
�ε

Aε∇uε∇uε + u2
ε

)
=
∫

�+
a0

(
∂u

∂x2

)2

+ hu2 +
∫

�−
A∇u∇u + u2. (40)
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Now to prove the strong convergence, consider the following integral

I ε =
∫

�+
Aε

(
∇̃uε − χ�ε

∂

∂x2
u

[
− aε

12
aε

11

1

])(
∇̃uε − χ�ε

∂

∂x2
u

[
− aε

12
aε

11

1

])

+
∫

�+
(ũε − χ�ε

u)2 +
∫

�−
A(∇uε − ∇u)(∇uε − ∇u) +

∫
�−

(uε − u)2.

As we have done in Theorem 1, expand the expression, apply unfolding operator and passing to the limit
using (38) and (40), we get limε→0 I ε = 0. Hence the coercevity of A implies the result. �

We now consider the homogenization in �ε with f ∈ L1(�).

4.2. Homogenization in �ε with L1 data

With A and Aε as in Section 4.1, consider the following problem in the domain �ε:{
− div(Aε∇uε) + uε = f in �ε,

Aε∇uε · νε = 0 on ∂�ε.
(41)

Here f ∈ L1(�) is a given function, νε is the outward normal vector on ∂�ε. A function uε is a
renormalized solution of (41) if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε ∈ L1(�ε) such that Tk(uε) ∈ H 1(�ε), for all k > 0,

1

k
‖Tk(u)‖2

H 1(�ε)
→ 0, as k → ∞,∫

�ε

Aε∇Tk(uε)∇(vg(uε)) + uεvg(uε) =
∫

�ε

f vg(uε),

for all k > 0, v ∈ H 1(�ε) ∩ L∞(�ε), g ∈ PC1
c (R) with supp(g) ⊂ [−k, k].

(42)

We wish to study the asymptotic behavior of uε as ε → 0. As we have done in the circular case, the limit
problem is nothing but the renormalized formulation of (36). Again, we only sketch the proof here.

Limit problem: Given f ∈ L1(�), consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ L1(�) such that Tk(u) ∈ W(�), for all k > 0,

1

k
‖Tk(u)‖2

W(�) → 0 as k → ∞,∫
�+

a0
∂Tk(u)

∂x2

∂(ψg(u))

∂x2
+ huψg(u) +

∫
�−

A∇Tk(u)∇(ψg(u)) + uψg(u)

=
∫

�+
hf ψg(u) +

∫
�−

f ψg(u),

for all k > 0, ψ ∈ W(�) ∩ L∞(�), g ∈ PC1
c (R) with supp(g) ⊂ [−k, k].

(43)
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The proof for existence and uniqueness of renormalized solutions of (42) and (43) are analogous to the
proof for (17) which is done in the Appendix.

Theorem 4. Let uε, u be the unique renormalized solutions of (42) and (43) respectively. Then, we have
the following convergences

ũε − χ�ε
u −→ 0 strongly in L1(�), (44)

T̃k(uε) − χ�ε
Tk(u) −→ 0 strongly in L1(�) and weakly* in L∞(�), (45)

˜∂

∂x2
Tk(uε) − χ�ε

∂

∂x2
Tk(u) −→ 0 strongly in L2

(
�+), (46)

˜∂

∂x1
Tk(uε) − χ�ε

(
−aε

12

aε
11

)
∂

∂x2
Tk(u) −→ 0 strongly in L2

(
�+), (47)

Tk(uε) − Tk(u) −→ 0 strongly in H 1
(
�−). (48)

Proof. The convergences (44) and (45) can be proved using the same steps as those in step 1 of The-
orem 2. That is using Lipschitz property of renormalized solutions and homogenization results with
L2 data. Now using the energy equality of (42), we get ‖Tk(uε)‖2

H 1(�ε)
� k‖f ‖L1�ε . Hence from the

properties of unfolding operator, there exists a w ∈ L2((0, 1);H 1(G)) and p ∈ L2(�U) such that

T ε
(
Tk

(
u+

ε

))
⇀ w weakly in L2

(
(0, 1);H 1(G)

)
and

T ε

(
∂

∂x1
Tk(uε)

)
⇀ p weakly in L2(�U).

(49)

Now from (45), using the properties of unfolding, we have

T ε
(
T̃k

(
u+

ε

)− χ�ε
Tk

(
u+)) = T ε

(
Tk

(
u+

ε

))− T ε
(
Tk

(
u+)) −→ 0 in L2(�U).

Since T ε(Tk(u
+)) −→ (Tk(u

+)) in L2(�U), we get w = Tk(u
+). In (42), let v = φε as defined in (39)

and g = gk
δ and follow the same steps as we have done in the proof of Theorem 2 to obtain∫

�ε

Aε∇Tk+1(uε)∇φεgk
δ (uε) +

∫
�ε

Aε∇Tk+1(uε)∇Tk+1(uε)φ
ε
(
gk

δ

)′
(uε)

+
∫

�ε

uεφ
εgk

δ (uε) =
∫

�ε

f φεgk
δ (uε).

Since gk
δ (uε) → χ{|uε |�k} a.e. as δ → 0, by Lebesgue dominated convergence theorem, as δ → 0, we

deduce that∫
�ε

Aε∇Tk+1(uε)∇φε + lim sup
δ→0

∫
�ε

Aε∇Tk+1(uε)∇Tk+1(uε)φ
εgk

δ

′
(uε)

+
∫

�ε

uεφ
εχ{|uε |�k} =

∫
�ε

f φεχ{|uε |�k}.
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Apply unfolding operator on the first term and passing to the limit as ε → 0 to get∫
�U

[
a11(y, x2) a12(y, x2)

a21(y, x2) a22(y, x2)

] [
p

∂
∂x2

Tk(u)

] [
φ(x)ψ ′(y)

0

]
(50)

+ lim sup
ε→0

(
lim sup

δ→0

∫
�ε

Aε∇Tk+1(uε)∇Tk+1(uε)φ
εgk

δ

′
(uε)

)
= 0.

By using the same steps as we done to obtain (27), we can get

lim sup
ε→0

(
lim sup

δ→0

∫
�ε

Aε∇Tk+1(uε)∇Tk+1(uε)φ
ε
(
gk

δ

)′
(uε)

)
= 0.

Hence from (50), we have∫
�U

[
a11(y, x2) a12(y, x2)

a21(y, x2) a22(y, x2)

] [
p

∂
∂x2

Tk(u)

] [
φ(x)ψ ′(y)

0

]
=
∫

�U

(
a11p + a12

∂

∂x2
Tk(u)

)
φ(x1, x2)ψ

′(y) = 0.

Since the above equality is true for all φ ∈ D(�+) and ψ ∈ C∞[0, 1], we have

p = −a12

a11

∂

∂x2
Tk(u).

Since {Tk(u
−
ε )} is bounded in H 1(�−), from weak compactness, we have up-to a sub-sequence

TK(uε) ⇀ v weakly in H 1
(
�−). (51)

Then from (44), we have v = Tk(u
−).

We now prove the corresponding strong convergences (corrector results). Using the energy equality
for renormalized formulations of (42) and (43), we have the following energy convergence

∫
�ε

Aε∇Tk(uε)∇Tk(uε) + uεTk(uε) −→
∫

�+
a0

(
∂Tk(u)

∂x2

)2

+ huTk(u)

+
∫

�−
A∇Tk(u)∇Tk(u) + uTk(u).

As we have done in Step 3 of proof of Theorem 2, using the above convergence we can deduce that

lim
ε→0

∫
�ε

Aε∇Tk(uε)∇Tk(uε) =
∫

�+
a0

(
∂Tk(u)

∂x2

)2

+
∫

�−
A∇Tk(u)∇Tk(u). (52)
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To get the strong convergence results consider the following integral

I ε =
∫

�+
Aε

(
∇̃Tk(uε) − χ�ε

∂

∂x2
Tk(u)

[
− aε

12
aε

11

1

])(
∇̃Tk(uε) − χ�ε

∂

∂x2
Tk(u)

[
− aε

12
aε

11

1

])

+
∫

�−
A
(∇Tk(uε) − ∇Tk(u)

)(∇Tk(uε) − ∇Tk(u)
)
.

Now expand I ε and apply unfolding operator. Then passing to the limit as ε → 0 using (49), (51) and
(52) to get limε→0 I ε = 0. From coercivity property of A, we get the corrector result (46), (47) and (48).
This completes the proof of the theorem. �

Remark 4. Here, we considered �ε ∈ R2, to make the presentation simpler. All the results still hold
and the proofs are similar if �ε ⊂ Rn, for any finite n.
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Appendix. Renormalized solutions

In the Appendix, we prove the existence, uniqueness and Lipschitz property of renormalized solutions.
We will prove it only for the circular limit system (17). The result will follow along the same steps for
the other limit system (43).

Theorem 5. The limit problem in circular domain (17) has a unique renormalized solution.

Proof. The proof is divided into several steps.
Step 1: Let fn ∈ L2(O), such that fn → f strongly in L1(O) as n → ∞. Then, for every n ∈ N, let

un be the solution of (7) with f = fn.

Claim. The sequence {un} is Cauchy in L1(O) and hence convergent in L1(O).

From (7), for ψ ∈ V (O), (un − um) satisfies∫
O+

a0
∂(un − um)

∂r

∂ψ

∂r
+ h(un − um)ψ +

∫
O−

A∇(un − um)∇ψ + (un − um)ψ

=
∫
O+

h(fn − fm)ψ +
∫
O−

(fn − fm)ψ.
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Now from the definition of Sδ = Tδ

δ
, we have Sδ(un − um) ∈ V (O). Choosing ψ = Sδ(un − um) as a test

function in the above variational form, we get∫
O+

1

δ
a0

(
∂

∂r
Tδ(un − um)

)2

+ h(un − um)Sδ(un − um),

+
∫
O−

1

δ
A∇Tδ(un − um)∇Tδ(un − um) + (un − um)Sδ(un − um),

=
∫
O+

h(fn − fm)Sδ(un − um) +
∫
O−

(fn − fm)Sδ(un − um).

Now Sδ → S as δ → 0 point-wise, applying Lebesgue dominated convergence theorem, and ellipticity
of a0 and A, we get∫

O+
h(un − um)S(un − um) +

∫
O−

(un − um)S(un − um) � ‖fn − fm‖L1(O)

which implies ‖un − um‖L1(O) � ‖fn − fm‖L1(O). Hence {un} is Cauchy and hence convergent to some
u in L1(O).

Step 2: Now, we will show that for each k, an n → ∞
Tk(un) → Tk(u) strongly in L1(O) and weakly* in L∞(O), (53)

Tk(un) ⇀ Tk(u) weakly in V (O). (54)

The convergence (53) follows from the strong convergence of un → u in L1 and the fact that Tk is a
bounded Lipschitz continuous function. Let us now prove (54). Choosing Tk(un) as a test function in
(7), we get∫

O+
a0

(
∂Tk(un)

∂r

)2

+ hunTk(un) +
∫
O−

A∇Tk(un)∇Tk(un) + unTk(un)

=
∫
O+

hfnTk(un) +
∫
O−

fnTk(un). (55)

The definition of Tk implies that tTk(t) � |Tk(t)|2. Thus, from the ellipticity of a0 and A, it follows that∫
O+

∣∣∣∣∂Tk(un)

∂r

∣∣∣∣2 +
∫
O+

∣∣Tk(un)
∣∣2 +
∫
O−

∣∣∇Tk(un)
∣∣2 +
∫
O−

∣∣Tk(un)
∣∣2

� k‖fn‖L1(O) � k sup
n

‖fn‖L1(O). (56)

Hence, for each k, {Tk(un)} is a bounded sequence in the Hilbert space V (O) and hence have a sub-
sequence converges weakly. But we already have Tk(un) → Tk(u) in L2(O) which gives us (54).

Step 3: We claim that 1
k
‖Tk(u)‖2

V (O)
→ 0 as k → ∞. From (55), we have

1

k

∥∥Tk(un)
∥∥2

V (O)
�
∫
O

fn

Tk(un)

k
.
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Thus, we have

lim sup
n

(
1

k

∥∥Tk(un)
∥∥2

V (O)

)
�
∫
O

f
Tk(u)

k
.

Using the fact that Tk(t)

k
→ 0 for every t , applying Lebesgue dominated convergence theorem to the right

hand side and pass to limit as k → ∞, we see that

lim sup
n

(
1

k

∥∥Tk(un)
∥∥2

V (O)

)
→ 0 as k → ∞. (57)

Then, from weak lower semi-continuity of norm in Hilbert Space, we have the desired result.
Step 4: In this step, we will show that the limit satisfies the following energy equality.

∫
O+

a0

(
∂

∂r
Tk(u)

)2

+ huTk(u) +
∫
O−

A∇Tk(u)∇Tk(u) + uTk(u)

=
∫
O+

hf Tk(u) +
∫
O−

f Tk(u). (58)

Throughout this step k > 0 is fixed. Let gp be defined as in Section 2.5. Consider Tk(u)gp(un) as a test
function in (7) with f = fn and u = un to get

∫
O+

a0

((
∂un

∂r

)2

Tk(u)g′
p(un) + ∂un

∂r

∂

∂r
Tk(u)gp(un)

)
+ hunTk(u)gp(un)

+
∫
O−

A
(∇un∇unTk(u)g′

p(un) + ∇un∇Tk(u)gp(un)
)+ unTk(u)gp(un)

=
∫
O+

hf Tk(u)gp(un) +
∫
O−

f Tk(u)gp(un). (59)

We now fix p > k, then as n → ∞, we have from (53) and (54) that∫
O+

a0
∂un

∂r

∂

∂r
Tk(u)gp(un) + hunTk(u)gp(un)

=
∫
O+

a0
∂T2p(un)

∂r

∂

∂r
Tk(u)gp(un) + huTk(u)gp(un)

−→
∫
O+

a0
∂T2p(u)

∂r

∂

∂r
Tk(u)gp(u) + huTk(u)gp(u),∫

O−
A∇un∇Tk(u)gp(un) + unTk(u)gp(un) −→

∫
O−

A∇T2p(u)∇Tk(u)gp(u) + uTk(u)gp(u),∫
O+

hf Tk(u)gp(un) +
∫
O−

f Tk(u)gp(un) −→
∫
O+

hf Tk(u)gp(u) +
∫
O−

f Tk(u)gp(u).
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Since limp→∞ gp(x) → 1, we have

∫
O+

a0
∂T2p(u)

∂r

∂

∂r
Tk(u)gp(u) + huTk(u)gp(u) −→

∫
O+

a0

(
∂

∂r
Tk(u)

)2

+ huTk(u),∫
O−

A∇T2p(u)∇Tk(u)gp(u) + unTk(u)gp(u) −→
∫
O−

A∇Tk(u)∇Tk(u) + uTk(u),∫
O+

hf Tk(u)gp(u) +
∫
O−

f Tk(u)gp(u) −→
∫
O+

hf Tk(u) +
∫
O−

f Tk(u).

Now coming to the remaining terms in (59), we get

lim sup
n

∣∣∣∣∫
O+

a0

(
∂un

∂r

)2

Tk(u)g′
p(un) +

∫
O−

A∇un∇unTk(u)g′
p(un)

∣∣∣∣
� 2k lim sup

n

1

2p

(∫
O+

a0

(
∂T2p(un)

∂r

)2

+
∫
O−

A∇T2p(un)∇T2p(un)

)
� 2k lim sup

n

(
1

2p
‖T2p‖2

V (O)

)
→ 0 as p → ∞. (Using (57))

So by letting n and then p to infinity in (59), we get the energy estimate (58).
Step 5: Here, we will prove the following strong convergence:

Tk(un) → Tk(u) strongly in V (O). (60)

Using the energy equality (58), we have as n → ∞,

lim
n→∞

∫
O+

a0

(
∂Tk(un)

∂r

)2

+ hunTk(un) +
∫
O−

A∇Tk(un)∇Tk(un) + unTk(un)

= lim
n→∞

∫
O+

hf Tk(un) +
∫
O−

f Tk(un)

=
∫
O+

hf Tk(u) +
∫
O−

f Tk(u)

=
∫
O+

a0

(
∂

∂r
Tk(u)

)2

+ huTk(u) +
∫
O−

A∇Tk(u)∇Tk(u) + uTk(u). (61)

But from (53) and (54), we have∫
O+

hunTk(un) +
∫
O−

unTk(un) −→
∫
O+

huTk(u) +
∫
O−

uTk(u) and∫
O+

hTk(un)
2 +
∫
O−

Tk(un)
2 −→

∫
O+

hTk(u)2 +
∫
O−

Tk(u)2.

(62)
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Then, from (61) and (62), we have ‖Tk(un)‖V (O) −→ ‖Tk(u)‖V (O). Together with the weak convergence
(54), we have the corrector result (60).

Step 6: Now, we will show that u is the renormalized solution as in (17).
Fix ψ ∈ V (O) ∩ L∞(O) and g ∈ (PC)1

c(R) such that supp(g) ⊂ [−k, k]. Take ψg(un) ∈ V (O) as a
test function in (7), with f = fn and u = un, we have∫

O+
a0

∂Tk(un)

∂r

∂(ψg(un))

∂r
+ hun

(
ψg(un)

)+ ∫
O−

A∇Tk(un)∇
(
ψg(un)

)+ uψg(un)

=
∫
O+

hfnψg(un) +
∫
O−

fnψg(un). (63)

Now using (53), (54) and (60) passing to the limit n → ∞ in (63) to get∫
O+

a0
∂Tk(u)

∂r

∂(ψg(u))

∂r
+ hu
(
ψg(u)

)+ ∫
O−

A∇Tk(u)∇(ψg(u)
)+ uψg(u)

=
∫
O+

hf ψg(u) +
∫
O−

f ψg(u).

Hence u satisfies (17). So, we have proved the existence of renormalized solution for (17). Now to get
the uniqueness, we prove an important property of renormalized solutions, that is Lipschitz property.

Step 7: Let u1 and u2 be solutions of (17) with source terms f1 and f2 in L1(O) respectively. Then

‖u1 − u2‖L1(O) � ‖f1 − f2‖L1(O). (64)

For δ > 0 and p > 0, let Sδ and gp be defined as in Section 2.5. Now define the functions

w = Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2) and z = Sδ

(
T2p(u1) − T2p(u2)

)
gp(u1).

Taking ψ = w and g = gp as test functions in (17) for u1, ψ = z and g = gp for u2 and taking the
difference, we get∫

O+
a0

(
∂

∂r

(
T2p(u1) − T2p(u2)

) ∂

∂r
Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1)

)
+
∫
O+

a0

(
∂

∂r

(
T2p(u1) − T2p(u2)

) ∂

∂r
T2p(u1)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)g

′
p(u1)

)
+
∫
O+

a0

(
∂

∂r

(
T2p(u1) − T2p(u2)

) ∂

∂r
T2p(u2)Sδ

(
T2p(u1) − T2p(u2)

)
g′

p(u2)gp(u1)

)
+
∫
O+

h
(
(u1 − u2)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1)

)
+
∫
O−

A∇(T2p(u1) − T2p(u2)
)∇Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1)

+
∫
O−

A∇(T2p(u1) − T2p(u2)
)∇T2p(u1)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)g

′
p(u1)
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+
∫
O−

A∇(T2p(u1) − T2p(u2)
)∇T2p(u2)Sδ

(
T2p(u1) − T2p(u2)

)
g′

p(u2)gp(u1)

+
∫
O−

(u1 − u2)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1)

=
∫
O+

h
(
(f1 − f2)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1)

)
+
∫
O−

(f1 − f2)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1).

Since Sδ = Tδ

δ
, we see that the first and fifth integrals are positive. Also by using the same arguments

as in step 4, as p → ∞, we get second, third, sixth and seventh integrals vanish. Now to see the other
integrals, as p → ∞ using Lebesgue dominated convergence theorem, we obtain:

9th term = lim
p→∞

∫
O+

h(f1 − f2)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1)

=
∫
O+

h(f1 − f2)Sδ(u1 − u2),

4th term = lim
p→∞

∫
O+

h(u1 − u1)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1)

=
∫
O+

h(u1 − u2)Sδ(u1 − u2),

10th term = lim
p→∞

∫
O−

(f1 − f2)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1)

=
∫
O−

(f1 − f2)Sδ(u1 − u2),

8th term = lim
p→∞

∫
O−

(u1 − u1)Sδ

(
T2p(u1) − T2p(u2)

)
gp(u2)gp(u1)

=
∫
O−

(u1 − u2)Sδ(u1 − u2).

Again by Lebesgue dominated convergence theorem as δ → 0, we have the following:

lim
δ→0

∫
O+

h(f − g)Sδ(u1 − u2) =
∫
O+

h(f − g)S(u1 − u2),

lim
δ→0

∫
O+

h(u1 − u2)Sδ(u1 − u2) =
∫
O+

h(u1 − u2)S(u1 − u2),

lim
δ→0

∫
O−

(f1 − f2)Sδ(u1 − u2) =
∫
O−

(f1 − f2)S(u1 − u2),

lim
δ→0

∫
O−

(u1 − u2)Sδ(u1 − u2) =
∫
O−

(u1 − u2)S(u1 − u2).
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Hence, we get,∫
O+

h(u1 − u2)S(u1 − u2) +
∫
O−

(u1 − u2)S(u1 − u2)

�
∫
O+

h(f1 − f2)S(u1 − u2) +
∫
O−

(f1 − f2)S(u1 − u2)

which implies ‖u1 − u2‖L1(O) � ‖f1 − f2‖L1(O). The uniqueness of renormalized solution follows from
(64). �

We have the following equivalent formulation of the weak solution which is used in the proof in the
main article.

Theorem 6. The renormalized formulation (15) is equivalent to the following formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε ∈ L1(Oε) such that Tk(uε) ∈ H 1(Oε), for all k > 0,

1

k
‖Tk(u)‖2

H 1(Oε)
→ 0 as k → ∞,∫

Oε

Aε∇Tk(uε)∇w + uεw =
∫
Oε

f w,

for all k > 0, w ∈ H 1(Oε) ∩ L∞(Oε) such that ∇w = 0 when |uε| > k.

(65)

That is, uε is a solution of (15) if and only if it is a solution of (65).

Proof. Let uε be a solution of (65). Clearly for v and g as in (15), vg(uε) will satisfy the conditions for
w in (65). Hence uε is a solution of (15).

Conversely, suppose that uε is a solution of (15). Choose v = w and g = gp (defined in Section 2.5)
in (65), where w is as in (65). Then,∫

Oε

Aε∇T2p(uε)∇wgp(uε) + Aε∇T2p(uε)∇T2p(uε)wg′
p(uε) + uεwgp(uε) =

∫
Oε

f wgp(uε).

Since ∇w = 0 when |uε| > k, we have ∇T2p(uε) = ∇Tk(uε). Then using the Lebesgue dominated
convergence theorem, we have

lim
p→∞

∫
Oε

Aε∇T2p(uε)∇wgp(uε) + uεwgp(uε) =
∫
Oε

Aε∇Tk(uε)∇w + uεw, and

lim
p→∞

∫
Oε

f wgp(uε) =
∫
Oε

f w.

Now from the third equality in (15), we have∣∣∣∣∫
Oε

Aε∇T2p(uε)∇T2p(uε)wg′
p(uε)

∣∣∣∣ � ‖w‖L∞(Oε)

1

p

∫
Oε

∣∣∇T2p(uε)
∣∣2 → 0 as p → ∞.

Since this is true for all k > 0, we see that uε satisfies (65). �
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